Sliding Block on an Incline Problem

What is the magnitude of the friction force along the plane when a block slides down an incline?

A block with a mass of 5.0 kg slides down a 37° incline with an acceleration of 5.6 m/s². The coefficient of kinetic friction between the block and the inclined surface is 0.050. What is the magnitude of the friction force along the plane?

Answer:

The magnitude of the friction force along the plane is 2 N.

When a block of 5.0 kg slides down a 37° incline, we can analyze the forces acting on the block to determine the friction force along the plane. The acceleration of the block is 5.6 m/s², with sin 37° = 0.6 and cos 37° = 0.8.

The equation for the forces along the direction perpendicular to the plane is:

R - mg cos θ = 0

Where: R is the reaction force, mg cos θ is the component of the weight perpendicular to the plane, m = 5.0 kg (mass of the block), g = 9.8 m/s² (acceleration of gravity), θ = 37°.

Solving for R, we get:

R = mgcos θ = (5.0)(9.8)(0.8) = 39.2 N

The frictional force is given by:

F = μR

Where μ = 0.050 (coefficient of friction).

Substituting the values, we find:

F = (0.050)(39.2) = 2 N

Therefore, the magnitude of the friction force along the plane when a block slides down the incline is 2 N.

← Where can you see both the north celestial pole and the south celestial pole at the same time Why does the resistance of the lamp change when too much current flows through the lamp →